ROOTS OF UNITY AND THE ADAMS-NOVIKOV SPECTRAL SEQUENCE FOR FORMAL A-MODULES

KEITH JOHNSON

ABSTRACT. The cohomology of a Hopf algebroid related to the Adams-Novikov spectral sequence for formal A-modules is studied in the special case in which A is the ring of integers in the field obtained by adjoining pth roots of unity to $\widehat{\mathbb{Q}}_p$, the p-adic numbers. Information about these cohomology groups is used to give new proofs of results about the E_2 term of the Adams spectral sequence based on 2-local complex K-theory, and about the odd primary Kervaire invariant elements in the usual Adams-Novikov spectral sequence.

One of the most powerful tools used in the computation of stable homotopy groups is the Adams-Novikov spectral sequence. The E_2 term of this spectral sequence is a certain Ext group derived from a universal formal group law. In [R3] the corresponding Ext group for a universal formal A-module, for A the ring of algebraic integers in an algebraic number field, K, or its p-adic completion, was introduced and certain conjectures about these groups were formulated. One of these conjectures (concerning the value of $\operatorname{Ext}^{1,*}$) was confirmed in [J] using a Hopf algebroid (i.e., a generalized Hopf algebra in which the left and right units need not agree), $E_A T$, which generalizes the Hopf algebroid $K_* K$ of stable cooperations for complex K-theory. The present paper is concerned with the cohomology of $E_A T$ in the special case of $A = \widehat{\mathbb{Z}}_p[\zeta]$ where ζ is a pth root of unity and $\widehat{\mathbb{Z}}_p$ denotes the p-adic integers. We will show that in this case $E_A T$ is contained in an extension of Hopf algebroids

$$\widetilde{E_AT} \xrightarrow{j} E_AT \xrightarrow{\rho} \overline{E_AT}$$

and that the cohomology of $\overline{E_AT}$ can be completely described. This provides us with information about the cohomology of E_AT via the Cartan-Eilenberg spectral sequence associated to this extension.

Two applications of this result are presented. In the case p=2, E_AT can be identified with the 2-adic completion of the Hopf algebroid $K_{\star}K_{(2)}$ of stable cooperations for 2-primary complex K-theory. In this case the cohomology

Received by the editors February 1, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 55T25; Secondary 55N22, 14L05.

of $\widetilde{E_A}T$ can also be described, so that we can completely describe the Cartan-Eilenberg spectral sequence (there are no nontrivial differentials for dimensional reasons). We therefore obtain a new proof of the results in [R1, K], computing $H^*(K_*K_{(2)})$.

A second application is the construction of nontrivial elements in the classical Adams-Novikov spectral sequence based on BP, the Brown-Peterson spectrum, which is a summand of MU, the spectrum representing complex cobordism. In [R3] a map of Hopf algebroids

$$\Psi \colon VT = BP BP \to V_AT$$

was described (here V_AT is the Hopf algebroid generalizing VT to the category of formal A-modules, and is constructed using isomorphisms of A-typical formal A-modules). Composing Ψ with the Conner-Floyd map

$$\Phi: V_A T \to E_A T$$

constructed in [J] and the map ρ , we have a map

$$\chi \colon VT \to \overline{E_AT}$$

from VT to a Hopf algebroid whose cohomology is known. We thus have a tool for identifying nonzero elements of $H^{**}VT$, the E_2 term of the classical Adams-Novikov spectral sequence. We apply this to give a new proof of Theorem 4 of [R1] concerning the odd primary Kervaire invariant elements.

1. An extension containing $E_{A}T$

In this section, we recall the definition and some of the structure of E_AT . We describe the homogeneous components of E_AT and construct two related Hopf algebroids, \widehat{C}_n and \overline{C}_n , with which we construct the extension described in the introduction. We conclude by computing the cohomology of \overline{C}_n .

The ring $A=\widehat{\mathbb{Z}}_p[\zeta]$ is the ring of integers in the field $K=\widehat{\mathbb{Q}}_p[\zeta]$, which is an extension of $\widehat{\mathbb{Q}}_p$ of degree p-1. A has a unique prime ideal (π) whose generator may be taken to be $\pi=\zeta-1$, and the residue field of A, i.e., $A/(\pi)$, is $\mathbb{Z}/p\mathbb{Z}$. p is totally ramified in A, with $(\pi)^{p-1}=(p)$.

Recall from [J] that the Hopf algebroid $(E_A^{},E_A^{}T)$ is defined by

$$E_A = A[t, t^{-1}],$$

$$E_A T = \{ f \in K[u, u^{-1}, v, v^{-1}] | f(at, bt) \in E_A, \text{ if } a, b \in A, a, b \equiv 1 \ (\pi) \}$$

and that E_A , E_AT are graded with $\deg(t)=\deg(u)=\deg(v)=2(p-1)$. The structure maps for (E_A,E_AT) are:

$$\begin{array}{ll} \eta_L(t) = u \,, & \eta_R(t) = v \,, \\ \psi(u) = u \otimes 1 \,, & \psi(v) = 1 \otimes v \,, \\ c(u) = v \,, & c(v) = u \,, \\ \varepsilon(u) = t \,, & \varepsilon(v) = t \,. \end{array}$$

If we denote the homogeneous component of E_AT of degree $2 \cdot n \cdot (p-1)$ by $(E_AT)_n$ then we obtain a Hopf algebroid $(A, (E_AT)_n)$. Let us also define

$$C_n = \{ f \in K[w, w^{-1}] | f(a) \in A \text{ if } a \in A, a \equiv 1 (\pi) \}.$$

 (A, C_n) can be given the structure of a Hopf algebroid via the maps

$$\begin{split} \eta_L(1) &= 1 \,, \quad \eta_R(1) = w^n \,, \\ \psi(w) &= w \otimes w \,, \quad c(w) = w^{-1} \,, \quad \varepsilon(w) = 1 \,. \end{split}$$

We may define a map $C_n \to (E_A T)_n$ by $f \mapsto u^n \cdot f(v/u)$ and it is straightforward to check that this defines an isomorphism of Hopf algebroids. Thus, in particular we have

$$H^{s,2n\cdot(p-1)}(E_{\perp}T)\simeq H^{s}(C_{n}).$$

We will do most of our computations using C_n rather than $E_A T$, and write C in place of C_n if the choice of right unit is not relevant.

Let us also write $B = C \cap K[w]$. We may define a sequence of polynomials in B inductively by

$$q_0 = (w-1)/\pi$$
, $q_{i+1} = (q_i^q - q_i)/\pi$.

Also, let us denote

$$q^{I}(w) = q_0^{i_0} \cdots q_m^{i_m}$$

if $I = (i_0, \ldots, i_m)$ is a multi-index.

Lemma 1. The polynomials $\{q^I | 0 \le i_j < p, m = 0, 1, 2, ...\}$ form a basis for B as an A-module.

Proof. This is Proposition 7 of [J] (note that these polynomials are denoted there by f_i).

Corollary 2. The polynomials $\{q_i|i=0,1,\ldots\}$ generate C over $A[w,w^{-1}]$.

It will be useful for us to have a slightly different generating set for C available in addition to this one. Define inductively

$$\tilde{q}_0 = (w-1)/\pi$$
, $\tilde{q}_1 = (w^p - 1)/\pi^{p+1}$, $\tilde{q}_{i+1} = (\tilde{q}_i^p - \tilde{q}_i)/\pi$

and

$$\tilde{q}^I = \tilde{q}_0^{i_0} \cdots \tilde{q}_m^{i_m}$$
 if $I = (i_0, \ldots, i_m)$.

Lemma 3. The polynomials $\{\tilde{q}^I | 0 \le i_j < p, m = 0, 1, 2, ...\}$ form a basis for B as an A-module.

Proof. Part of this lemma is, of course, that $\tilde{q}_i(w) \in B$. Since for any $a \in A$, $a^p - a \equiv O(\pi)$, it is sufficient for us to show that $\tilde{q}_1(w) \in B$. This, however, follows from [J, Lemma 17].

To see that this set forms a basis, note that the $(n+1)\times (n+1)$ matrix that expresses the polynomials \tilde{q}^I with $\sum i_j p^j \le n$ as a linear combination of the polynomials q^I is triangular, with diagonal entries equal to 1. Thus, it is

invertible over A, and so the polynomials \tilde{q}^I span B. They are clearly linearly independent.

Corollary 4. The polynomials $\{\tilde{q}_i|i=0,1,\ldots\}$ generate C over $A[w,w^{-1}]$.

Our interest in this second generating set is motivated by the fact, easily proved by induction, that $\tilde{q}_i(w)$ for $i \ge 1$ is a polynomial in w^p . If we denote $\tilde{C} = C \cap K[w^p, w^{-p}]$ and $\tilde{B} = \tilde{C} \cap K[w^p]$, then we have

Corollary 5. The polynomials $\{\tilde{q}^I | i_0 = 0, 0 \le i_j < p, m = 1, 2, ...\}$ form a basis for \tilde{B} as an A-module.

Corollary 6. The polynomials $\{\tilde{q}_i | i = 1, 2, ...\}$ generate \tilde{C} over $A[w^p, w^{-p}]$.

A third algebra related to C and \widetilde{C} is

$$\widehat{C} = \{ f \in K[x, x^{-1}] | f(a) \in A \text{ if } a \equiv 1 \ (\pi^{p+1}) \}.$$

We make (A, \hat{C}_n) into a Hopf algebroid by defining

$$\eta_L(1) = 1$$
, $\eta_R(1) = x^n$,
 $\psi(x) = x \otimes x$, $c(x) = x^{-1}$, $\varepsilon(x) = 1$.

We also define $\widehat{B} = \widehat{C} \cap K[x]$.

The analogs of the polynomials q_i and \tilde{q}_i in this case are the polynomials defined by

$$\hat{q}_1 = (x-1)/\pi^{p+1} \,, \quad \hat{q}_{i+1} = (\hat{q}_i^p - \hat{q}_i)/\pi \,.$$

We also use the notation $\hat{q}^I = \hat{q}_1^{i_1} \cdots q_m^{i_m}$ if $I = (i_1, \dots, i_m)$. The analog of Lemmas 1 and 3 is

Lemma 7. The polynomials $\{\hat{q}^I | 0 \le i_j < p, m = 1, 2, ...\}$ form a basis for \hat{B} as an A-module.

Proof. The map $K[x] \to K[x]$ defined by $g(x) \mapsto g((x-1)/\pi^{p+1})$ maps the algebra of polynomials with the property that $g(a) \in A$ if $a \in A$ isomorphically to \widehat{B} . Since it also maps the basis for this former algebra constructed in [J, Proposition 7], onto the set $\{\widehat{q}^I\}$, the latter must be a basis for \widehat{B} .

Corollary 8. The polynomials $\{\hat{q}_i|i=1,2,\ldots\}$ generate \widehat{C} over $A[x,x^{-1}]$.

The connection between \widehat{C} and the previous two Hopf algebras we have considered is given by

Proposition 9. The map from \hat{C} to C that sends x to w^p is an injection of Hopf algebroids whose image is \tilde{C} .

Proof. Since this map sends \hat{q}_i to \tilde{q}_i , the result is clear.

We next describe the Hopf algebroid $(\overline{E}_A, \overline{E}_A \overline{T})$, or rather we describe its homogeneous, degree $n \cdot 2 \cdot (p-1)$ component, \overline{C}_n . Let \overline{C}_n denote the dual of the group algebra of the cyclic group of order p:

$$\overline{C}_n = A[\mathbb{Z}/p\mathbb{Z}]^* = \operatorname{Hom}_A(A[\mathbb{Z}/p\mathbb{Z}], A).$$

The structure maps for \overline{C}_n are, using δ to denote a generator for $\mathbb{Z}/p\mathbb{Z}$,

$$\begin{split} & \psi(f)(\boldsymbol{\delta}^i \otimes \boldsymbol{\delta}^j) = f(\boldsymbol{\delta}^{i+j})\,, \\ & \eta_L(1)(\boldsymbol{\delta}^i) = 1\,, \quad \eta_R(1)(\boldsymbol{\delta}^i) = \boldsymbol{\zeta}^{n \cdot i}\,, \\ & c(f)(\boldsymbol{\delta}^i) = f(\boldsymbol{\delta}^{-i})\,, \quad \varepsilon(f) = f(1)\,. \end{split}$$

Let us also define a map of Hopf algebroids $\rho: (A, C_n) \to (A, \overline{C}_n)$ by $\rho(f)(\delta^i) = f(\zeta^i)$.

The critical fact about ρ is

Lemma 10. ρ is a normal map of Hopf algebroids.

Proof. It is straightforward that ρ preserves the Hopf algebroid structure maps and so defines a map of Hopf algebroids; the question is whether it is normal. Referring to [R4, A1.1.10] we must verify that

$$C_n \square_{\overline{C}'_n} A = A \square_{\overline{C}'_n} C_n$$

where \Box denotes the cotensor product and, for (A, Γ) a Hopf algebroid, Γ' is the associated Hopf algebra, defined by

$$\Gamma' = \Gamma/(\eta_{P}(a) - \eta_{I}(a)|a \in A).$$

In the case $\Gamma = \overline{C}_n$, this becomes

$$\overline{C}'_n = \begin{cases} \overline{C}_n & \text{if } p | n, \\ A & \text{if } (p, n) = 1. \end{cases}$$

To see this, note that if p|n, then

$$(\eta_R(a) - \eta_L(a))(\delta^i) = a \cdot (\eta_R(1) - \eta_L(1))(\delta^i)$$

= $a \cdot (\zeta^{n \cdot i} - 1) = a \cdot (1 - 1) = 0$

while if (n, p) = 1, then the ideal generated by $\eta_R(a) - \eta_L(a)$ is

$$I = \{ \phi \in \overline{C}_n | \phi(1) = 0 \}.$$

Thus, the map $\overline{C}_n' = \overline{C}_n/I \to A$ that sends ϕ to $\phi(1)$ is an isomorphism. Since $C_n \square_A A = A \square_A C_n = C_n$, we may assume that p|n. The cotensor product $C_n \square_{\overline{C}_n} A$ is defined to be the kernel of the map

$$C_n \simeq C_n \otimes_A A \to C_n \otimes_A \overline{C}_n \otimes_A A$$

which sends f to $(1 \otimes \rho)(\psi f) \otimes 1 - f \otimes \eta_L(1) \otimes 1$. This kernel consists of those elements $f \in \overline{C}_n$ for which

$$(1\otimes \rho)(f(w\otimes w))=f(w)\otimes 1$$

in $C_n \otimes_A \overline{C}_n$. These are precisely those elements $f \in \overline{C}_n$ of the form $f(w) = g(w^p)$. Similarly, $A \square_{\overline{C}_n} C_n$ consists of those $f \in C_n$ for which

$$(\rho \otimes 1)(f(w \otimes w)) = \eta_R(1) \otimes f(w)$$

in $\overline{C}_n \otimes C_n$. Since $\eta_R(1) = 1$ in \overline{C}_n when p|n, we see that this also consists of those $f \in \overline{C}_n$ of the form $f(w) = g(w^p)$.

If we define the sub-Hopf algebroid (\tilde{A}, \tilde{C}_n) of (A, C_n) by

$$\tilde{\tilde{A}} = A \square_{\overline{C}'_n} A, \quad \tilde{\tilde{C}}_n = A \square_{\overline{C}_n} C_n \square_{\overline{C}_n} A,$$

then, following [R4, A1.1.15], we have

Corollary 11. $(\tilde{A}, \tilde{C}_n) \xrightarrow{i} (A, C_n) \xrightarrow{\rho} (A, \overline{C}_n)$ is an extension of Hopf algebroids. (The fact that i is an inclusion is [R4, A1.1.14].)

For this to be useful we must describe (\tilde{A}, \tilde{C}_n) . As noted in the proof of [R4, A1.1.14], we have

$$\begin{split} \tilde{A} &= \left\{ a \in A \middle| \eta_L(a) = \eta_R(a) \text{ in } \overline{C}_n \right\}, \\ \tilde{\tilde{C}}_n &= \left\{ f \in C_n \middle| (\rho \otimes 1 \otimes \rho) \psi^2 f = \eta_L(1) \otimes f \otimes \eta_R(1) \right\} \end{split}.$$

and so

$$(\tilde{\tilde{A}},\,\tilde{\tilde{C}}_n) = \left\{ \begin{array}{ll} 0 & \text{if } (n\,,\,p) = 1\,, \\ (A\,,\,\widetilde{C}_n) \simeq (A\,,\,\widehat{C}_{n/p}) & \text{if } n|p\,. \end{array} \right.$$

The applications we have in mind for this extension involve the cohomology of C_n , which we approach via that of \widetilde{C}_n and \overline{C}_n . We conclude this section, therefore, by recalling the cohomology of \overline{C}_n . Let us define two homomorphisms S, T: $\overline{C}_n \to \overline{C}_n$ by

$$S(f)(x) = f(\delta x) - f(x)$$
 and $T(f)(x) = \sum_{i=0}^{p-1} f(\delta^i x)$.

A straightforward computation yields

Lemma 12. $0 \to A \xrightarrow{\eta_L} \overline{C}_n \xrightarrow{S} \overline{C}_n \xrightarrow{T} \overline{C}_n \xrightarrow{S} \cdots$ is an injective resolution of A considered as a left C_n comodule.

Corollary 13. The cohomology of \overline{C}_n is given by

$$H^{s}(\overline{C}_{n}) = \begin{cases} A/\pi A, & s \text{ odd,} \\ 0, & s \text{ even,} \end{cases}$$

if (n, p) = 1, and by

$$H^{s}(\overline{C}_{n}) = \begin{cases} A, & s = 0, \\ A/pA, & s > 0, s \text{ even}, \\ 0, & s \text{ odd}, \end{cases}$$

if p|n.

Proof. Applying the functor $A \square_{C_n}()$ to the resolution of A and using the identification $A \square_{C_n} C_n = A$ gives the complexes

$$A \xrightarrow{\zeta^{n}-1} A \xrightarrow{0} A \xrightarrow{\zeta^{n}-1} A \xrightarrow{0} \cdots$$

if (n, p) = 1, and

$$A \xrightarrow{0} A \xrightarrow{p} A \xrightarrow{0} A \xrightarrow{p} A \xrightarrow{p} \cdots$$

if p|n.

2. APPLICATIONS

2.1. The cohomology of $K_*K_{(2)}$. If the prime p is chosen to be 2, then $A=\widehat{\mathbb{Z}}_2$ and C_n can be described as

$$C_n = \{ f \in \widehat{\mathbb{Q}}_2[w, w^{-1}] | f(a) \in \widehat{\mathbb{Z}}_2 \text{ if } a \equiv 1 \ (2) \}.$$

The description of $K_{\star}K$ given in [AHS]

$$K_{\star}K = \{ f \in \mathbb{Q}[u, u^{-1}, v, v^{-1}] | f(at, bt) \in \mathbb{Z}[t, t^{-1}, 1/a, 1/b]$$
 if $a, b \in \mathbb{Z}, a, b \neq 0 \}$

shows that C_n can be identified with $(K_*K_{(2)})_n$ so that the E_2 term of the Adams spectral sequence based on 2-local complex K-theory has as its completion

$$E_2^{*,n} = H^*(C_n) = \operatorname{Ext}_C^*(\widehat{\mathbb{Z}}_2, \widehat{\mathbb{Z}}_2).$$

The Cartan-Eilenberg spectral sequence, [R4, A1.3.14], allows us to describe these groups in terms of the cohomology of \widetilde{C}_n and \overline{C}_n :

Proposition 14. There is a spectral sequence converging to $\operatorname{Ext}_{C_n}^*(\widehat{\mathbb{Z}}_2, \widehat{\mathbb{Z}}_2)$ whose E_2 term is $E_2^{s,t} = \operatorname{Ext}_{\widetilde{C}_n}^s(\widehat{\mathbb{Z}}_2, \operatorname{Ext}_{\overline{C}_n}^t(\widehat{\mathbb{Z}}_2, \widehat{\mathbb{Z}}_2))$.

Since $\operatorname{Ext}_{\overline{C}_n}^*(\widehat{\mathbb{Z}}_2,\widehat{\mathbb{Z}}_2)$ is described at the end of §1, we turn to describing $\operatorname{Ext}_{\widehat{C}_n}^*(\widehat{\mathbb{Z}}_2,)$. The key to this description is the following injective resolution, which is the analog at the prime 2 of a resolution constructed for odd primes in [B, §7].

Lemma 15. The sequence

$$0 \longrightarrow \widehat{\mathbb{Z}}_2 \xrightarrow{p_0} \widehat{C}_n \xrightarrow{p_1} \widehat{C}_n \xrightarrow{p_2} \widehat{\mathbb{Q}}_2 \longrightarrow 0$$

defined by $p_1(f) = f(9w) - f(w)$ and $p_2(\sum a_i w^i) = a_0$ is an injective resolution of $\widehat{\mathbb{Z}}_2$.

(The left \widehat{C}_n comodule structure of $\widehat{\mathbb{Z}}_2$ and $\widehat{\mathbb{Q}}_2$ is that defined by η_L .) (The factor $9 = 2^3 + 1$ occurs here because it is a generator of

$$(1+2^3\widehat{\mathbb{Z}}_2)/(1+2^n\widehat{\mathbb{Z}}_2)$$

for $n \geq 4$.)

Proof. If $p_1(\sum a_i w^i) = \sum_i a_i (9^i - 1) \cdot w^i = 0$ then $a_i = 0$ for $i \neq 0$ and the integrality condition for \widehat{C}_n shows that $a_0 \in \widehat{\mathbb{Z}}_2$. Thus, $\ker(p_1) = \operatorname{Im}(p_0)$.

The fact that the polynomials $(w^{2^k} - 1)/2^{k+3}$ are in \widehat{C}_n shows that p_2 is surjective.

It remains to verify that $ker(p_2) = Im(p_1)$. Suppose that

$$f = \sum_{i \neq 0} a_i w^i \in \ker(p_2).$$

For any $a \in \widehat{\mathbb{Q}}_2$, the polynomial

$$g(w) = a + \sum_{i \neq 0} \frac{a_i w^i}{9^i - 1}$$

is mapped to f by p_1 . The question is whether a can be chosen so that $g \in \widehat{C}_n$. Choose a so that g(1) = 0. Since $p_1(g) = g(9w) - g(w) \in \widehat{C}_n$ it follows by induction on k that $g(9^k) \in A$ for any k, and this is enough to imply $g \in \widehat{C}_n$. To see this, first note that there exists m such that $2^m \cdot g \in \widehat{\mathbb{Z}}_2[w, w^{-1}]$, and such that if $a, b \in \widehat{\mathbb{Z}}_2$, then $g(b) \in \widehat{\mathbb{Z}}_2$. However, $(1+2^3\widehat{\mathbb{Z}}_2)/(1+2^m\widehat{\mathbb{Z}}_2)$ is cyclic, generated by 9. Thus, if $a \in 1+2^3\widehat{\mathbb{Z}}_2$, then $a \equiv 9^k \mod 2^m$ for some k and so $g(a) \in \widehat{\mathbb{Z}}_2$.

Corollary 16.

(a)

$$\operatorname{Ext}_{\widehat{C}_n}^s(\widehat{\mathbb{Z}}_2,\,\widehat{\mathbb{Z}}_2) = \left\{ \begin{array}{ll} \widehat{\mathbb{Z}}_2\,, & s = 0\,, \\ \widehat{\mathbb{Q}}_2/\widehat{\mathbb{Z}}_2\,, & s = 2\,, \\ 0\,, & otherwise\,; \end{array} \right.$$

(b) for $n \neq 0$

$$\operatorname{Ext}_{\widehat{C}_n}^s(\widehat{\mathbb{Z}}_2\,,\,\widehat{\mathbb{Z}}_2) = \left\{ \begin{array}{ll} \mathbb{Z}/2^{d(n)}\mathbb{Z}\,, & s=1\,,\\ 0\,, & otherwise\,; \end{array} \right.$$

(c)

$$\operatorname{Ext}_{\widehat{C}_n}^s(\widehat{\mathbb{Z}}_2\,,\,\mathbb{Z}/2\mathbb{Z}) = \left\{ \begin{array}{ll} \mathbb{Z}/2\mathbb{Z}\,, & s=0\,,\,1\,,\\ 0\,, & otherwise. \end{array} \right.$$

Here d(n) is the largest integer such that $2^{d(n)}$ divides $2^3 \cdot n$. Proof. $\operatorname{Ext}_{\widehat{C}}(\widehat{\mathbb{Z}}_2, \widehat{\mathbb{Z}}_2)$ is the cohomology of the complex

$$\widehat{\mathbb{Z}}_2 \,\square_{\widehat{C}_{\mathbf{a}}} \, \widehat{C}_n \to \widehat{\mathbb{Z}}_2 \,\square_{\widehat{C}_{\mathbf{a}}} \, \widehat{C}_n \to \widehat{\mathbb{Z}}_2 \,\square_{\widehat{C}_{\mathbf{a}}} \, \widehat{\mathbb{Q}}_2 \to 0$$

If n = 0 this complex is

$$\widehat{\mathbb{Z}}_2 \overset{0}{\longrightarrow} \widehat{\mathbb{Z}}_2 \overset{1}{\longrightarrow} \widehat{\mathbb{Q}}_2 \longrightarrow 0$$

and, if $n \neq 0$

$$\widehat{\mathbb{Z}}_2 \xrightarrow{9^n-1} \widehat{\mathbb{Z}}_2 \longrightarrow 0 \longrightarrow 0$$
.

These account for (a) and (b), since the highest power of 2 dividing $9^n - 1$ is $2^{d(n)}$. For (c), we are interested in the cohomology of

$$\widehat{\mathbb{Z}}_2 \square_{\widehat{C}_n} \widehat{C}_n \otimes_A \mathbb{Z}/2\mathbb{Z} \to \widehat{\mathbb{Z}}_2 \square_{\widehat{C}_n} \widehat{C}_n \otimes_A \widehat{\mathbb{Z}}/2\mathbb{Z} \to \widehat{\mathbb{Z}}_2 \square_{\widehat{C}_n} \otimes_A \mathbb{Z}/2\mathbb{Z} \to 0.$$

This complex is, for any n,

$$\mathbb{Z}/2\mathbb{Z} \xrightarrow{0} \mathbb{Z}/2\mathbb{Z} \longrightarrow 0$$
.

Combining these results with Proposition 14 and Corollary 13, we obtain

Corollary 17. The E_2 term of the spectral sequence of Proposition 14 is

$$E_{2}^{s,t} = \begin{cases} \widehat{\mathbb{Z}}_{2}, & \text{if } (s,t) = (0,0), \ n=0, \\ \widehat{\mathbb{Q}}_{2}/\widehat{\mathbb{Z}}_{2}, & \text{if } (s,t) = (2,0), \ n=0, \\ \mathbb{Z}/2^{d(m)}\mathbb{Z}, & \text{if } (s,t) = (1,0), \ n=2m=0, \\ \mathbb{Z}/2\mathbb{Z}, & \text{if } (s,t) = (0,2t'), \ n=2m, \ or \ (1,2t'), \\ 0, & \text{otherwise}. \end{cases}$$

Corollary 18.

$$\mathrm{Ext}_{K_{\bullet}K_{(2)}}^{s,\,t}(\pi_{\bullet}K\,,\,\pi_{\bullet}K) = \begin{cases} \mathbb{Z}_{(2)}\,, & \text{if } (s\,,\,t) = (0\,,\,0)\,, \\ \mathbb{Z}/2^{\infty}\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}\,, & \text{if } (s\,,\,t) = (2\,,\,0)\,, \\ \mathbb{Z}/2^{d(m)}\mathbb{Z}\,, & \text{if } (s\,,\,t) = (1\,,\,2m) \neq (1\,,\,0)\,, \\ \mathbb{Z}/2\mathbb{Z}\,, & \text{if } (s\,,\,t) = (s\,,\,2t') \neq (2\,,\,0)\,,\,\,s \geq 2\,, \\ 0\,, & \text{otherwise}\,. \end{cases}$$

2.2. The odd primary Kervaire invariant elements. The Hopf algebroid (V_4, V_4T) is constructed using isomorphisms of A-typical formal A-modules. If $A = \mathbb{Z}_{(n)}$, then one obtains $(V, VT) = (BP_*, BP_*BP)$, the Hopf algebroid of Brown-Peterson homology. If A is a $\mathbb{Z}_{(p)}$ algebra as in the case $A = \widehat{\mathbb{Z}}_p[\zeta]$ with which we are concerned, then a formal A-module is also a formal $\mathbb{Z}_{(p)}$ module. Thus, we obtain, as in [R3, 3.11], as map of Hopf algebroids

$$\Psi \colon (V\,,\,VT) \to (V_{{}_{\!\mathcal{A}}}\,,\,V_{{}_{\!\mathcal{A}}}T)\,.$$

Composing this with the generalized Conner-Floyd map

$$\Phi \colon (V_A^{}\,,\,V_A^{}T) \to (E_A^{}\,,\,E_A^{}T)$$

of [J] and with $\rho: (E_A, E_A T) \to (E_A, \overline{E_A T})$ we obtain a map

$$\chi \colon (V\,,\,VT) \to (E_{_A}\,,\,\overline{E_{_A}T})$$

and so a map in cohomology

$$\chi^* \colon H^*VT \to H^*(E_AT)$$
.

We will show that a family of interesting elements in H^*VT , the odd primary Kervaire invariant elements, have nonzero image under this map.

Recall that (V, VT) has the description

$$V = \mathbb{Z}_{(n)}[v_1, v_2, \dots], \quad VT = V[t_1, t_2, \dots],$$

and that V, VT are graded with $\deg(v_i)=\deg(t_i)=2(p^i-1)$. The elements h_0 , $b_i\in H^{1,2(p-1)}(VT)$, $H^{2,2(p-1)p^{i+1}}(VT)$, respectively, are represented in the cobar complex of VT by $h_0=[t_1]$ and

$$b_i = \frac{1}{p} \sum_{i=1}^{p^{i+1}-1} (p_j^{i+1}) [t_1^j \otimes t_1^{p^{i+1}-j}].$$

Our result is

Proposition 19. All monomials in h_0 , b_i , i = 0, 1, 2, ..., have nonzero image in $H^*(E_A T)$ under χ^* .

Proof. It is straightforward to describe the map of cobar complexes induced by χ . We also need, however, a method of identifying cohomologically nontrivial elements in the cobar complex of $E_A T$ or \overline{C}_n . For this we define a chain map from the cobar complex of \overline{C}_n to the complex described in §1, Lemma 12.

Recall from [R4, A1.2.11] that the cobar resolution of A as a \overline{C}_n comodule has as its sth term $\overline{C}_n \otimes (\ker(\varepsilon))^{\otimes s}$ and that the differential is given by

$$d(\gamma_0 \otimes \cdots \otimes \gamma_s) = \sum_{i=0}^s (-1)^s \gamma_0 \otimes \cdots \otimes \psi(\gamma_i) \otimes \cdots \otimes \gamma_s + (-1)^{s+1} \gamma_0 \otimes \cdots \otimes \gamma_s.$$

If we identify elements of

$$\overline{C}_n \otimes (\ker(\varepsilon))^{\otimes s} \subseteq \overline{C}_n^{\otimes s+1} = \operatorname{Hom}_4(A[\mathbb{Z}/p\mathbb{Z}], A)^{\otimes s+1}$$

with multilinear maps from $A[\mathbb{Z}/p\mathbb{Z}]^{s+1}$ to A, then the differential becomes

$$df(w_0, \dots, w_{s+1}) = \sum_{i=0}^{s} (-1)^i f(w_0, \dots, w_i \cdot w_{i+1}, \dots, w_{s+1}) + (-1)^{s+1} f(w_0, \dots, w_s).$$

Using this identification we define a chain map, R, from the cobar resolution of A over \overline{C}_n to the resolution described in Lemma 12.

$$R(f)(w) = \begin{cases} f(w, \zeta) & \text{if } s = 1, \\ \sum_{i_1, \dots, i_{s-1/2}=1}^{p-1} f(w, \zeta^{i_1}, \zeta, \zeta^{i_2}, \dots, \zeta), & s \text{ odd}, \\ \sum_{i_1, \dots, i_{s/2}=1}^{p-1} f(w, \zeta, \zeta^{i_1}, \zeta, \zeta^{i_2}, \dots, \zeta^{i_{s/2}}), & s \text{ even.} \end{cases}$$

Applying $A\square_{C_n}()$ we obtain a map from the cobar complex of \overline{C}_n to the complex of Corollary 13. We denote this map by R as well. It is given by

$$R(f) = \begin{cases} f(\zeta), & s = 1, \\ \sum f(\zeta^{i_1}, \zeta, \zeta^{i_2}, \dots, \zeta), & s \text{ odd}, \\ \sum f(\zeta^{i_1}, \zeta, \zeta^{i_2}, \dots, \zeta^{i_{s/2}}), & s \text{ even}. \end{cases}$$

Under the composition $\Phi \circ \Psi$, the elements h_0 and b_i are mapped to $(w-1)/\pi$ and

$$\frac{1}{p} \sum_{i=1}^{p^{i+1}-1} {p^{i+1} \choose j} \left(\frac{w-1}{\pi}\right)^j \otimes \left(\frac{w-1}{p}\right)^{p^{i+1}-j}$$

in the cobar complex of C_n . Under the composition $R \circ \rho$, these are mapped to 1 and

$$\frac{1}{p}\sum_{j=1}^{p-1} \left(\left(\frac{\zeta^{j}-1}{\pi} + 1 \right)^{p^{i+1}} - \left(\frac{\zeta^{j}-1}{\pi} \right)^{p^{i+1}} - 1 \right),$$

respectively. We denote the latter element of A by k_i . This series of maps will send the monomial $h_0^e b_1^{i_1} \cdots b_m^{i_m}$ to $k_1^{i_1} \cdots k_m^{i_m}$. Showing that $k_i \not\equiv 0 \mod \pi$ will, therefore, complete the proof of Proposition 19.

$$\frac{1}{p} \sum_{j=1}^{p-1} \left(\left(\frac{\zeta^{i} - 1}{\pi} + 1 \right)^{p^{i+1}} - \left(\frac{\zeta^{i} - 1}{\pi} \right)^{p^{i+1}} - 1 \right) \\
= \frac{1}{p} \sum_{j=1}^{p-1} \sum_{k=1}^{p-1} {p^{i+1} \choose k} \left(\frac{\zeta^{i} - 1}{\pi} \right)^{k} \\
\equiv \frac{1}{p} \sum_{j=1}^{p-1} \sum_{k=1}^{p-1} {p^{m+1} \choose k \cdot p^{m}} \left(\frac{\gamma^{j-1}}{\pi} \right)^{k \cdot p^{m}} \mod \pi \\
\equiv \frac{1}{p} \sum_{j=1}^{p-1} \sum_{k=1}^{p-1} {p \choose k} \left(\frac{\gamma^{j-1}}{\pi} \right)^{k} \mod \pi \\
\equiv \frac{1}{p} \sum_{j=1}^{p-1} \sum_{k=1}^{p-1} {p \choose k} j^{k} \mod \pi \\
= \frac{1}{p} \sum_{k=1}^{p-1} {p \choose k} \sum_{j=1}^{p-1} j^{k} \equiv \frac{-1}{p} {p \choose p-1} \mod \pi \\
\equiv -1 \mod \pi.$$

In these congruences, we have used the fact that $\binom{p^{i+1}}{k}$ is divisible by p^2 unless k is divisible by p^i , that $\binom{p^{i+1}}{kp^i} \equiv \binom{p}{k} \mod p$, that since $\zeta = \pi + 1$, $((\zeta^i - 1)/\pi) \equiv i \mod \pi$, and, finally, that $\sum_{j=1}^{p-1} j^k \equiv 0 \mod p$ if k < p-1 and that $\sum_{j=1}^{p-1} j^{p-1} \equiv -1 \mod p$.

REFERENCES

- [AHS] J. F. Adams, A. S. Harris, and R. M. Switzer, *Hopf algebras of cooperations for real and complex K-theory*, Proc. London Math. Soc. (3) 23 (1971), 385-408.
- [B] A. K. Bousfield, On the homotopy theory of K-local spectra at an odd prime, Amer. J. Math. 107 (1985), 895-932.
- [J] K. Johnson, The Conner-Floyd map for formal A-modules, Trans. Amer. Math. Soc. 302 (1987), 319-332.
- [K] W. Kreuger, The 2-primary K-theory Adams spectral sequence, J. Pure Appl. Algebra 36 (1985), 143-158.
- [R1] D. C. Ravenel, The non-existence of odd primary Arf invariant elements in stable homotopy theory, Proc. Cambridge Philos. Soc. 83 (1978), 429-443.
- [R2] ____, Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984), 351-414.
- [R3] _____, Formal A-modules and the Adams Novikov spectral sequence, J. Pure Appl. Algebra 32 (1984), 327-345.
- [R4] _____, Complex cobordism and stable homotopy groups of spheres, Academic Press, New York, 1986.

DEPARTMENT OF MATHEMATICS, STATISTICS AND COMPUTING SCIENCE, DALHOUSIE UNIVERSITY, HALIFAX, NOVA SCOTIA, CANADA